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Summary 
 
The formation of crystalline deposits on the heat transfer surfaces is one of the main 
problems in thermal desalination processes. Precipitation starts once the concentration 
of a certain salt exceeds its equilibrium solubility. Equations for this condition are 
provided in this chapter. Depending on operating conditions, the deposition process can 
be diffusion or reaction controlled, or a combination of both. Based on a careful 
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literature survey, the effect of operating parameters, such as flow velocity, surface 
temperature and salt concentration, are described. Correlations are provided for the 
prediction of deposition rates for heat transfer due to forced convection and/or 
subcooled flow boiling. Finally, crystallization fouling in shell and tube, plate and 
frame and fin-tube heat exchangers is discussed.  
 
1. Introduction 

Water is generally classified as a universal solvent, since almost everything is soluble in 
it to some extent. Because of its dissolving power, water can leach significant 
concentrations of salts as well as other materials with which it comes in contact. 
Variations of temperature, pressure, pH and the relative concentrations of other 
substances in solution control the solubility of a given salt in water. Once the solubility 
of dissolved material is exceeded some of the dissolved salts will precipitate out to form 
deposits. 
 
In processes such as evaporation of saline waters or sea waters, various salts will 
precipitate in a certain order depending on operating temperature, pressure, ionic 
strength of solution, etc. The solubility of most salts increases with increasing 
temperature, and as a rule, these salts do not crystallize unless their concentrations are 
extremely high. Scale deposits are formed from those salts whose solubilities are 
generally limited and in most instances decrease with increasing temperature. The 
principal constituents that cause scaling problems in seawater and most industrial 
evaporators are calcium sulfates (gypsum, hemihydrate and anhydrite) and calcium 
carbonate. Theoretically, the deposition of calcium carbonate can be controlled by 
maintaining a slightly acidic pH. Calcium sulfate, however, is not significantly affected 
by pH and tends to precipitate in various forms once the water becomes supersaturated. 
Next to corrosion, the major limiting economic factor in evaporation processes is the 
degree to which seawater or industrial fluids can be concentrated before calcium sulfate 
scale occurs. For example, seawater becomes saturated with respect to calcium sulfate 
anhydrite when it is evaporated at 100°C to two-thirds of its original volume (Langelier 
et al. 1957). 
 
Therefore, knowledge of the saturation concentrations of salts and salt mixtures under 
various operating conditions is essential to predict the tendency of water to form scale. 
Furthermore, almost all researchers express the rate of crystallization of these salts with 
respect to the degree of supersaturation driving force. Consequently, accurate 
knowledge of the saturation concentration of these salts is a prerequisite for the 
prediction of their rate of deposition on heat transfer surfaces. 
 
2. Chemical Fundamentals 

2.1. CaCO3 Solubility in Water 
 
Calcium carbonate crystals exist in three forms, namely aragonite, calcite and vaterite. 
Since all three forms of this salt have an inverse solubility, their solubilities in water 
will decrease as temperature increases, e.g. at a heated surface. This trend is illustrated 
in Figure 1 where the solubilities of various calcium carbonates are plotted as a function 
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of temperature (Plummer and Busenberg 1982). Recently Najibi et al. (1997) have 
shown that in subcooled flow boiling, more than 99 per cent of calcium carbonate 
deposits in the form of aragonite, the solubility of which has been studied in detail by 
Plummer and Busenberg (1982). The solubility product of calcium carbonate is defined 
as: 
 

2 2
sp 3K Ca  CO+ −⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦  (1) 

 

 
 

Figure 1. Solubility of calcium carbonate in water as a function of temperature. 
 
Therefore, in the absence of common ion effects, the solubility of calcium carbonate 
(aragonite) in water becomes the square root of the solubility product, Ksp, which is 
given by the following equation (Plummer and Busenberg 1982): 
 

sp
2903.293log(K ) 171.9773 0.077993T 71.595log(T)

T
= − − + +  (2) 

 
In eq. (2), T is in degrees Kelvin and Ksp in molar units. 
 
2.2. Solubility of calcium carbonate for variable pH 
 
Calcium carbonate precipitation is usually caused by pressure drop releasing CO2 from 
bicarbonate ions (HCO3

-). The effect of partial pressure of CO2 on the pH of water is 
shown in Figure 2 at three different operating temperatures (Cowan and Weintrilt 1976). 
When CO2 is released from water, the pH increases, the solubility of dissolved 
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carbonate decreases and consequently the more soluble bicarbonates are converted to 
less soluble carbonate. As an illustration, the loss of 100 mg l-1 of bicarbonate deposits 
28.6 lb/1000 bbl of water in calcium carbonate. 
 

 
 

Figure 2. Effect of CO2 partial pressure on pH of water. 
 
The following reactions take place in aqueous solutions of calcium carbonate: 
 

2 2-
3 3CaCO ( ) Ca COs +⇔ +  (3) 

 
2- - -
3 2 3CO +H O HCO  + OH⇔  (4) 

 
- -
3 2 2 3HCO  + H O H CO  + OH⇔  (5) 

 
-

2H O H OH+⇔ +  (6) 
 
Thus the total carbon concentration is: 
 

- -
T 3 2 3 3C   [HCO ]  [H CO ]  [CO ]= + +  (7) 

 
The total alkalinity (TA) of the solution is given by: 
 

- 2- -
3 3[TA]  [HCO ]  2[CO ]  [OH ]  [H ]+= + + +  (8) 

 
In order to take into account the effect of pH on the solubility of calcium carbonate, the 
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distribution constants of carbonic acid should be taken into consideration: 
 

[ ]
3

1
2

H  HCO
K

CO

+ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=  (9) 

 
2
3

2
3

H  CO
K

HCO

+ −

−

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=
⎡ ⎤⎣ ⎦

 (10) 

 
where, K1 and K2 are the first and second molar distribution constants of carbonic acid, 
which are functions of operating temperature and can be calculated from the following 
equations (Plummer and Busenberg 1982): 
 

( )1

2

21834.37log K 356.3094 0.06091964T
T

1684915126.8339 logT
T

= − − +

+ −

 (11) 

 

( )2

2

5151.79log K 107.8871 0.03252849T
T

563713.938.92561 logT
T

= − − +

+ −

 (12) 

 
Simultaneous solution of equations (8), (9) and (10) for the three different unknowns 
yields: 
 

[ ]2
3

2

TA H OH
CO

H
2 1

2K

+ −
−

+

⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦⎡ ⎤ =⎣ ⎦ ⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟+
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 (15) 

 
Thus, by knowing pH and TA of the solution, and the dissociation constants for 
carbonic acid, the concentrations of all species present in the solution can be calculated. 
Replacing the calculated concentrations and operating temperature in equations (1) and 
(2), the tendency of the solution for the crystallization fouling of calcium carbonate can 
be determined. 
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2.3. CaSO4 Solubility in Water 
 
The solubility of calcium sulfate in water is shown in Figure 3 as a function of operating 
temperature (Landolt-Bornstein 1985). At temperatures higher than 40°C, the solubility 
of calcium sulfate decreases with increasing temperature for the ordinary solid phases. 
Under normal operating conditions, the hottest portion of water is the layer next to the 
heat transfer surface. Any precipitation is, therefore, expected to take place here. 

 

 
 

Figure 3. Solubility of calcium sulfate in water. 
 

 
Figure 4. Effect of sodium chloride concentration on the solubility of calcium sulfate. 
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Seawater contains substantial amounts of other ions, especially sodium and chlorine. 
These ions are formed mostly from the dissolution of sodium chloride. The solubility of 
calcium sulfate is strongly affected by the presence and concentration of other ions in 
the system. 

 
The solubilities of various calcium sulfates are shown in Figure 4 as a function of the 
sodium chloride concentration for different temperatures (Marshal and Slusher 1960). 
The solubility is increased with the concentration of sodium chloride, and decreased 
with increasing temperature. Most of the deposited calcium sulfate found in seawater 
desalination plants and in other industries is in the form of hemihydrate, the solubility 
of which has been studied in detail by Marshal and Slusher (1960). Najibi (1997), 
Najibi et al. (1997) by non-linear regression analysis of these data, developed the 
following correlation for the prediction of the saturation concentration of calcium 
sulfate hemihydrate as a function of ionic strength of solution composition and 
temperature. 
 

( )* a bzC 136  10 +=  (16) 
 
C* is in kg m-3 and parameters a, b and z are: 
 
a 2.047 0.01136T(K)
b 6.5832 0.0226T(K)
= − ⎫

⎬= − + ⎭
 (17) 

 
Iz

1 1.5 I
=

+
 (18) 

 
In these equations, I is the ionic strength expressed in kmol m-3. 
 
- 
- 
- 
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