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Summary 
 
The development of seawater desalination membranes is continuously progressing and 
has demonstrated highly remarkable achievement in performance. Indeed, there appears 
to be no limit to the performance of these membranes in sight. The first historic 
discovery of Loeb-Sourirajan asymmetric reverse osmosis (RO) membrane enabled 
seawater desalination on an industrial scale. Later, the membrane performance was 
improved by the development of thin-film-composite (TFC) membranes by Cadotte. 
The fluxes of currently available commercial membranes are an order of magnitude 
higher than the RO membranes of 1960s with salt rejection as high ad 99.8 %. Further 
attempts are being made to increase the flux and to improve membrane stability by 
incorporating nanoparticles and by modifying the membrane surface. Moreover, 
fabrication of membranes that can reject boron, arsenics, and organic compounds of low 
molecular weights to higher degrees than currently available membranes is required to 
produce less hazardous drinking water. Membranes that can withstand ultra-high 
pressure for seawater desalination and membranes that are operable at ultra-low 
pressures for brackish water desalination were achieved for drinking water production. 
Typically, membrane distillation, forward osmosis, and carbon nanotube membranes are 
considered potentially applicable for seawater desalination. The current status and 
future direction of membrane desalination in the Middle East and Singapore have been 
discussed as case studies.  
  
1. Introduction 
 
It is reported that 96.5% of the earth’s water is located in seas and oceans, 1.7% in the 
ice caps, 0.8% is considered to be fresh water with the rest being brackish water. Since 
water shortage has been a problem for many communities and humans have been 
searching for the solution for a long time, desalination, turning salty water into fresh 
water, is not necessarily a new concept. Today the shortage of drinking water is a 
serious world-wide concern due to population growth and the increased demand for 
drinking water that exceeds readily available water resources. Over 1 billion people are 
without clean drinking water and approximately 2.3 billion people (41% of the world 
population) are living in water scarce regions (Greenlee et al, 2009). As a result, people 
have started to search for solutions with water reuse and seawater desalination as the 
keys for the sustainable growth of human activities. Water reuse is basically for the 
production of water for uses such as irrigation, power plant cooling water, industrial 
process water and ground water recharge. It has also been accepted as a method for the 
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production of drinking water in Singapore (Newater). Alternatively, desalination has 
become a primary source of the drinking water production. Current desalination 
technology consists of two methods. One is a thermal desalination method that has been 
developed over the past 60 years, while the other is membrane processes that have been 
developed over the past 40 years. 
 
Desalination is a general term for methods to remove salt from salty water to produce 
fresh water. Notably, the definition of fresh water depends on the country. For example, 
the US Environmental Protection Agency (EPA) has non-enforceable standards of 250 
mg/L chloride and 500 mg/L total dissolved salts (TDS) for fresh water (EPA, 2002). 
The World Health Organization (WHO) and the Gulf Drinking Water standards 
recommended a drinking water standard of 1000 mg/L TDS (Fritzmann et al, 2007). In 
comparison to the government standards, most desalination facilities are designed to 
achieve a TDS of 500 mg/L or less (Greenlee et al, 2009). 
 
 When the desalinated water is used for other purposes, e.g. crop irrigation, the TDS 
concentration may be higher. The feed water salinity for desalination facilities ranges 
from 1000 mg/L to 60,000 mg/L. Most of the seawater resources contain 30,000 to 
45,000 mg/L TDS, while the brackish water within a range of 1,000 to 10,000 mg/L is 
treated by Reverse Osmosis (RO) (Greenlee et al, 2009). As mentioned above, 
desalination processes fall into the following two categories, i.e. thermal processes and 
membrane processes.  
 
The thermal process has been used for many years since the prehistoric era but the 
operation of the large scale distillation plant for drinking water production began in 
1950s (Greenlee et al, 2009). In the beginning a process called multi-effect distillation 
(MED) was used but later a process called multi-stage flush (MSF) distillation was 
developed. The Middle East as a whole holds about 50% of the world desalination 
capacity and primarily uses MSF technology. However, facilities based on the 
membrane process have rapidly been installed since the 1960s and now surpass the 
thermal process in new plant installations. Outside of the Middle East, new RO plant 
installations have been continuing steadily. In 2001, 51% of the new installations were 
based on RO process, while in 2003, RO process accounted for 75% of the new 
production capacity. 
 
RO, nanofiltration (NF) and electro-dialysis (ED) are the typical membrane processes 
available for desalination. RO and NF are called pressure-driven membrane processes 
since the transmembrane pressure difference is the driving force for the mass transport, 
while for ED the electrical potential difference is the driving force for the mass (ions) 
transport. ED is an older membrane desalination process than RO and NF. NF is a 
relatively new membrane separation process developed in 1980s. While NF can not 
desalinate seawater to produce drinking water in one step, it can be used successfully to 
treat the mildly brackish water (Greenlee et al, 2009). It is hence desirable to use NF in 
combination with RO for seawater desalination. The most important feature of NF is its 
capacity to remove divalent ions such as calcium and magnesium that contribute to 
hardness of water. However, RO membrane can remove monovalent ions such as 
sodium and chloride and hence has become the mainstream of membrane desalination 
technology. Salt rejection as high as 99.7 and 99.8%, can be achieved by RO 
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(Hydranautics, 2007; Greenlee et al, 2009; Reverberi and Gorenflo, 2007). RO 
membrane technology is also applicable for both seawater and brackish water 
desalination.  
 
As mentioned earlier, the first countries that used the desalination process on a large 
scale for drinking water production were in the Middle East. Seawater desalination 
plants began to be developed in the 1950s, and the first industrial desalination plant was 
opened in Kuwait in 1960s. The first successful RO plant used brackish water as feed in 
the late 1960s (Amjad, 1993). In the following decades, membrane permeability was 
much improved and RO membranes were then applied for seawater desalination (Van 
der Bruggen and Vandecasteele, 2002). From the early 1960s to the end of the 1990s, 
the membrane productivity (flux) and salt rejection have much improved as shown in 
Figure 1. Table 1 also shows similar advancement made for the Dow RO membranes. 
 

 
 

Figure 1. Progress in membrane performance during the past forty years. 
Reverse osmosis conditions: feed NaCl concentration, 1500-3000 ppm; operating 

pressure, 0.5-3.0 MPa; temperature, 25◦C; pH, 6.5. I, II, III and IV are fully aromatic 
polyamide TFC membranes (adapted from Kurihara and Fusaoka, 1999) 

Year Production capacity 
(gpd) Salt rejection (%) 

Brackish water 
1990 8,000 98 
1998 10,000 99.2 
2007 11,000 99.8 

Seawater 
1990 4,000 99.4 
1998 5,500 99.5 
2007 7,500-8,000 99.8 

 
Table 1. Advances in Dow RO membrane 

 
From 1996 to 2007 the rejection of typical seawater desalination membrane increased 
from 99.6 to 99.8% and the flux increases from 43 to 69 L/m2 day bar (Mickols et al, 
2005). As of 2009, over 15,000 desalination plants were in operation world-wide, and 
approximately 50% of those are RO plants. A new recent trend is to construct large 
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seawater desalination plants with a production capacity of 100,000 m3/day or more 
(Greenlee et al, 2009). 
 
Saudi Arabia is currently the world leader in desalination with approximately 26% of 
global production capacity, followed by the United States (17%). In Saudi Arabia most 
of the desalination plants are based on the thermal process (newly constructed plants are 
different) and the source water is seawater. In contrast, in the United States 69% of the 
desalination plants are based on RO and only 7% is seawater desalination plants. While 
only 20% of the total number of the desalination plants world-wide use thermal process, 
50% of the total production capacity is based on the thermal processes. Israel has 
opened the world’s largest seawater RO desalination plant with a production capacity of 
330,000 m3/day, or 100 million m3/year. The United Arab Emirates (UAE) opened its 
Fujairah desalination plant in 2005 with a combined MSF and RO production capacity 
of 454,000 m3/day. 
 
2. Membrane Processes for Desalination: Overview 
 
2.1. Reverse Osmosis History 
 
As mentioned, RO is currently dominant in membrane separation processes for 
desalination. Interestingly, the early development of RO membrane for seawater 
desalination began with the following fundamental equation called the Gibbs 
Adsorption Isotherm (Sourirajan, 1970). 
 

aRT ln
1

∂
∂

−=Γ
σ ,           (1) 

 
where Γ  is the surface excess, R is universal gas constant, T is absolute temperature, 
σ  is surface tension and a  is activity. 
 
The equation predicts the presence of a very thin pure water layer at the surface of 
saline water. Table 2 summarizes the thickness of such pure water layers calculated on 
the basis of Eq. (1). As the table shows the thickness ranges from 2.6 to 5.6 nm, 
depending on the concentration of sodium chloride.  

 
NaCl concentration in molality (mol kg-1) Pure water layer thickness (nm) 

0 0.56 
0.747 0.38 
1.603 0.34 
2.435 0.24 

 
Table 2. The thickness of pure water layer at the air/sodium chloride solution interface 

 
It was Yuster’s group at University of California at Los Angeles (UCLA) who 
attempted to skim the pure surface water layer mechanically (Yuster et al, 1958). 
However, the attempt failed. Applying the concept underlying the Gibbs Adsorption 
Isotherm, Sourirajan further attempted to collect the pure water layer by applying 
pressure on the saline water that was brought to contact with one side of a membrane. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MEMBRANE  PROCESSES - Vol. II - Recent Advances in Membrane Science and Technology in Seawater Desalination – with 
Technology Development in the Middle East and Singapore - Takeshi Matsuura and Dipak Rana,  Mohamed Rasool Qtaishat, 
Gurdev Singh 

© Ecyclopedia of Desalination and Water Resources (DESWARE) 

Sourirajan’s attempt was soon found to be successful and desalinated water was 
produced as permeate from the membrane. After initial attempts using cellulose and 
silicone coated cellulose membranes, a commercial cellulose acetate (CA) membrane 
was used, which resulted in a high salt rejection.  Even though the latter rejection was 
considered high enough for drinking water production, the flux of water was extremely 
low with few drops of permeate collected in a day and the membrane was thought to be 
practically useless. It should be noted that Reid and Breton obtained, quite 
independently, similar experimental results of seawater desalination by using a CA 
membrane at the University of Florida (Reid and Breton, 1959). It took another 4 years 
for Loeb and Sourirajan to develop CA membranes with fluxes of practical usefulness, 
which opened up the avenue to the novel membrane desalination process, called 
Reverse Osmosis (RO). 
 
According to Sourirajan, the mechanism of desalination by RO membrane is as follows: 
When salty water; e.g, sodium chloride solution, is in contact with the surface of a 
membrane, an interfacial pure water layer is formed at the solution/membrane interface. 
Assuming analogy between sodium chloride solution-air interface and sodium chloride 
solution-membrane interface, the interfacial pure water layer, t , is as thick as a fraction 
of nanometer.  In the presence of a pore, the diameter of which is smaller than or equal 
to 2t , the pure water layer will flow through the pore under the pressure applied on the 
sodium chloride solution and appear on the other side of the membrane as permeate (see 
Figure 2a). If the pore size is larger than 2t , the sodium chloride solution will flow in 
the central region of the pore, contaminating the permeate (Figure 2b).  
 

 
 

Figure 2. Preferential sorption capillary flow mechanism of RO 
 
Thus, there are twin requirements for the success of RO membrane development. One is 
the presence of the interfacial pure water layer and the other is the formation of pores, 
the sizes of which are as small as a fraction of nanometer. The pore sizes of RO 
membranes were evaluated theoretically by several researchers. For example, Schultz 
and Assumma concluded that the size of the pore should be 1.85 nm, based on the SEM 
images of polymer nodules at the surface of a CA RO membrane (Schultz and 
Assumma, 1970). Glückauf calculated the salt (sodium chloride) rejection as a function 
of the pore size based on the Onsager-Samalas equation for the dielectric force 
(Glückauf, 1965).  
 
Positronium Annihilation Lifetime Spectroscopy (PALS) has become a popular tool 
recently to characterize the subnanopores. For example, Boussu et al characterized (in-
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depth) six commercial NF membranes. By using depth-selective PALS measurements, 
it was revealed that the skin layer had two different pore sizes: a pore size of 1.25-155 Ǻ 
as well as a pore size of 3.20-3.90 Ǻ (both depending on the membrane type) (Boussu et 
al, 2007). Thus, the presence of sub-nanometer pores predicted in the 1960s can now be 
measured by a sophisticated instrumental technique.   
 
2.2. Asymmetric Structure of the Membrane 
 
Most of membranes that are used in industrial separation processes have an asymmetric 
structure and so are called asymmetric membranes. Figure 3 shows schematically a 
typical cross-sectional view of an asymmetric membrane (Matsuura, 1994). As shown 
in the figure, an asymmetric membrane consists of two layers; i.e. one very thin dense 
layer at the top of the membrane and a porous sublayer underneath the top dense layer 
(also called top skin layer). While the top dense layer governs the permeation properties 
of the membrane, the porous sub-layer only provides the membrane with mechanical 
strength. When the material of the top skin layer and the porous sublayer are the same, 
the membrane is called integrally skinned asymmetric membrane. This type of 
membrane is made by the dry-wet phase inversion technique. When the polymer for the 
top skin layer is different from the polymer for the porous sub-layer, the membrane is 
called composite membrane. The advantage of the composite membrane over the 
integrally skinned asymmetric membrane is that the material for the top skin layer and 
for the porous sublayer can be chosen separately to optimize the overall performance. 
This type of membrane is made by coating a thin layer on top of the surface of a porous 
substrate. Various coating techniques are available but the interfacial in-situ 
polymerization method has been proven to be commercially most successful. 
 

 
 

Figure 3. Asymmetric structure of the membrane 
 
2.3. Phase Inversion Technique-Preparation of Integrally Skinned Asymmetric 
Membranes 
 
Phase inversion is a process in which a polymer is transformed from a liquid to a solid 
state. There are a number of methods to achieve phase inversion. Among others, the 
dry-wet phase inversion technique and the temperature induced phase separation (TIPS) 
are most commonly used in the industrial membrane manufacturing. The dry-wet phase 
inversion technique was applied by Loeb and Sourirajan in their development of the 
first CA membrane for seawater desalination (Loeb and Sourirajan, 1961, 1963, 1964). 
Therefore, this method is often called the Loeb-Sourirajan method. In the Loeb-
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Sourirajan method, a polymer solution is prepared by mixing polymer, solvent and 
sometimes even nonsolvent. The solution is then cast on a suitable surface by a doctor 
blade to a thickness of about 250 μm. After partial evaporation of the solvent, the cast 
film is immersed in a bath of nonsolvent medium, often called gelation medium. Due to 
a sequence of two desolvation steps, i.e. evaporation of solvent and solvent-nonsolvent 
exchange in the gelation bath, solidification of polymer film takes place. It is desirable 
to choose a solvent of strong dissolving power with high volatility. During the first step 
of desolvation by solvent evaporation, a thin skin layer of solid polymer is formed 
instantly at the top of the cast film due to the loss of solvent. In the solvent-nonsolvent 
exchange process that follows, nonsolvent diffuses into, while solvent diffuses out of 
the polymer solution film through the thin solid layer. The change in the composition of 
the polymer solution film during the solvent-nonsolvent exchange process, often called 
a composition path, is illustrated schematically in a triangular diagram that involves 
polymer-solvent-nonsolvent (Figure 4).  
 
At a given moment, the content of the solvent in the solution film becomes so low that 
the solvent no longer is able to hold polymer in one phase. Phase separation takes place, 
forming droplets of one liquid phase dispersed in the other continuous liquid phase. The 
moment of phase separation, and the size and the number of the dispersed droplets 
depend on the nature of solvent and nonsolvent and the polymer solution composition. 
The control of the number and the size of the droplets will eventually control the 
structure of the porous substrate (Kesting, 1971).  
 

 
 

Figure 4. A typical composition path 
 
The thin layer of solid polymer that forms during the first evaporation step becomes the 
top skin layer that will govern the selectivity and the flux of the membrane, while the 
porous structure that forms during the solvent-nonsolvent extraction step becomes the 
porous sublayer, providing the mechanical strength.  
 
Hence, the membrane obtained by the dry-wet phase inversion process is an integrally 
skinned asymmetric membrane. The top skin layer can also be made porous by lowering 
the polymer concentration in the casting solution and the solvent evaporation period. 
The asymmetric membranes can also be made in tubular form using a casting bob 
assembly and hollow fibers can be spun using a hollow fiber spinneret (Sourirajan and 
Matsuura, 1985). 
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