
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATERIALS SCIENCE AND ENGINEERING – Vol. I – Bonding in Solids, Structural and Chemical Properties - R. W. Grimes 

©Encyclopedia of Life Support Systems (EOLSS) 

BONDING IN SOLIDS, STRUCTURAL AND CHEMICAL 
PROPERTIES 
 
R. W. Grimes 
Imperial College, London, UK 
 
Keywords: Atomic structure, band structure, bonding, bulk modulus, conductivity, 
covalent, defects, electrons, energy level, hydrogen bonding, hybridization, insulators, 
ionic, metal, molecule, orbital, quantum, Schrödinger equation, semi-conductors, wave 
function. 
  
Contents 
 
1. Introduction 
2. Atomic Orbitals: their Origin and their Shapes 
2.1. The Four Quantum Numbers 
2.2. The Schrödinger Equation 
2.3. Atoms with more than One Electron 
3. Forming Bonds between like Atoms: Bonding and Anti-bonding Molecular Orbitals, 

Sigma and Pi-bonds 
3.1. The Born-Oppenheimer Approximation 
3.2. The Molecular Orbital Approximation 
3.3. Linear Combination of Atomic Orbitals 
3.4. The Binding Curve for H2

+ 
3.5. Predicting the Stability of Other Simple Molecules 
3.6. The Fluorine Diatomic Molecule: Another Homonuclear Molecule 
4. Forming Bonds between Unlike Atoms: Polar Covalent and Ionic Bonds, Two 

Extremes of the Same Process 
4.1. HF, a Polar Covalent Molecule 
4.2. NaF, an Ionic Molecule 
5. A Simple Model for an Ionic Solid: A Balance between Coulombic Attraction and 

Short-range Repulsion 
5.1. Effective Potentials for Ionic Molecules 
5.2. Extending the Model to Bulk NaF 
5.3. Calculating the Bulk Modulus 
6. From Hybridization to Conjugation to Band Structures: Why Diamond and Graphite 

have such Different Properties 
6.1. Carbon 
6.2. Hybridization and Molecular Orbitals 
7. More about Bands: Metals, Insulators and Semiconductors 
7.1. Forming Bands in Metals 
7.2. Energy Level Distribution from a Free Electron Model 
7.3. Forming Bands in Insulators 
7.4. Forming Bands in Semiconductors 
7.5. Summary 
8. Molecular Solids, van der Waals Solids and Hydrogen Bonding 
8.1. Forming Solids from Molecules 
8.2. Molecular Interactions 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATERIALS SCIENCE AND ENGINEERING – Vol. I – Bonding in Solids, Structural and Chemical Properties - R. W. Grimes 

©Encyclopedia of Life Support Systems (EOLSS) 

9. Conclusion: How to use the Knowledge 
9.1. General Comments 
9.2. The Influence of Defects 
9.3. Concluding Comments 
Acknowledgements 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
Ultimately the physical properties of all materials are governed by the characteristics of 
the bonds between their constituent atoms. In all cases these bonds are simply a 
consequence of the different ways in which electrons can be distributed between the 
nuclei of solids. Here we approach this problem by solving the Schrödinger equation, 
approximately, for simple systems, thereby developing the framework that allows us to 
understand much more complex systems. Initially, we consider solutions for atoms, 
which provide us with the hydrogen-like orbitals. These building blocks are used to 
construct solutions for simple molecules, such as H2, F2, HF and NaF. Consequently, 
ideas such as ionicity, covalency, bonding and anti-bonding become clearly established. 
By considering larger molecules and hybridization, such models explain the extreme 
differences in the bonding exhibited by diamond and graphite. This leads to an 
understanding of how bands arise as the infinite limit of a local orbital model, which is 
then applied to metals and semiconductors. However, an alternative free electron wave 
model for metals is also introduced and developed. By considering how a periodic 
lattice potential modifies electron waves, we finally converge on a model for metals, 
which shows aspects of both approaches. 
 
Often the dominant term in the cohesive energy of a solid is long range, e.g., as in ionic 
solids. It is therefore important to introduce the semi-classical Born model based on a 
long-range Madelung Coulomb sum and short-range parameterized potentials. 
Molecular solids also exhibit longer range interactions although these are because of 
dipole–dipole interactions, again adequately modeled using a semi-classical approach 
(or more directional hydrogen bonds). In all cases these models lend themselves to 
application within quantitative predictive computer simulation codes. An understanding 
of bonding in solids can thereby directly complement experimental endeavor. 
 
1. Introduction 
 
Each element is defined by its atomic number, n. These n electrons are acted on by a 
central electrostatic potential and consequently, they are confined to move within 
specific areas of space called orbitals. Pauli’s exclusion principle requires that only two 
electrons occupy each orbital. Therefore, two atoms, who’s of which the values of n 
differ by only one, may have quite distinctly different overall shapes. This is important, 
because the shape of an atom dictates what types of bonds it can form with its 
neighbors. Consequently, elements side by side in the periodic table (i.e., those who’s of 
which their n values differ by one) can have quite distinct elemental forms. For 
example, moving across the periodic table, at 300 K and one atmosphere pressure, 
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fluorine (n = 9) is a dimolecular gas (F2), neon (n = 10) is a monatomic inert gas but 
sodium (n = 11) is a soft metallic solid. Clearly if we are to understand bonding in 
solids, we must begin by understanding the shapes of atomic orbitals. 
 
A knowledge of orbital shape is thus the point from which we begin to understand why 
different materials exhibit such diverse bonding characteristics. Indeed the bonds are 
described by molecular orbitals, which are constructed from the appropriate atomic 
orbitals. Typically we then categorize bonding types as: covalent, ionic, metallic and 
molecular. Unfortunately, this division conceals the more interesting fact that a pure 
bonding type is very unusual. In fact, simple covalency only occurs between isolated 
homonuclear pairs, such as in the diamond allotrope of carbon. Conversely, the graphite 
allotrope of carbon exhibits both distinct covalent and molecular bonding types in the 
same crystal structure. Furthermore, bonds between heteronuclear species are never 
purely covalent—they may range from polar covalent to highly ionic. Covalent and 
ionic bonding types are better considered as two extremes of the same process. A 
molecular orbital approach will allow us to understand why this is so. 
 
It is intended that this article should present techniques or theories that are predictive. 
After all, macroscopic properties of materials are a consequence of atomic scale 
bonding processes. However, in many engineering applications, compositions are 
regulated to control processes that are occurring at grain boundaries or perhaps within 
submicron scale precipitates. The atomic processes that occur are highly complex and it 
is not usual to analyze them at the atomic bonding level, except in a superficial manner. 
As we continue the trend to engineer at smaller length scales, subtle differences in local 
atomic distributions will have important consequences to materials properties. The 
rationale for studying atomic scale bonding processes is that it should lead to the 
engineering of materials at the atomic scale. 
 
2. Atomic Orbitals: Their Origin and their Shapes 
 
2.1. The Four Quantum Numbers 
 
Each atom is composed of a positively charged nucleus surrounded by a number of 
negatively charged electrons. The electrons occupy allowed states, i.e., they move 
within regions of space known as atomic orbitals. Each atomic orbital is uniquely 
characterized by three quantum numbers, n,  and m . However, the values that these 
quantum numbers may assume are restricted, i.e., there are quantum conditions. 
 
The first or principle quantum number, n, may take any integer value, i.e., n = 1, 2, 3,... 
 
The second quantum number, , identifies the magnitude of the angular momentum of 

the electron and  may take values,  = 0, 1, 2, 3,.... However, the values of  for each 

energy level are restricted by the n quantum number of the energy level since  may 

never exceed (n−1). Therefore the values that  may take are  = 0, 1, 2, …, (n−2), 

(n−1). Consequently for each value of n there are n number of allowed values of . By 
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convention, the allowed values of  are designated by letters (see Table 1). 
 

Angular momentum  0 1 2 3 4 
Symbol s p d f g 

 
Table 1. The Allowed Values of Angular Momentum and their Symbol 

 
Thus: 
 
n = 1,  = 0                   1s-orbital 

n = 2,  = 0                   2s-orbital 

n = 2,  = 1                   2p-orbital 

n = 3,  = 0                   3s-orbital 

n = 3,  = 1                   3p-orbital 

n = 3,  = 2                   3d-orbital 
 
In addition to its restriction with respect to magnitude, the angular momentum is 
restricted with respect to its direction; space quantization. In other words, the angle that 
the angular momentum makes with respect to a given axis, by convention the z-axis, is 
quantized. The values of Lz are given in Eq. (1) 
 

 mLz =       (1) 
 
where m  = 0, ± 1, ± 2, ± 3, ..., ± . Thus, for each value of the angular momentum, there 

are (2  + 1) values of m  or, (2  + 1) different orientations. Consequently for an s-

orbital, since  = 0, m  = 0. However, for a p-orbital,  = 1, so that m  = −1, 0 or 1, that is 
three p-orbitals. There are five d-orbitals. 
 
In addition to its charge and mass, each electron exhibits an intrinsic property known as 
spin. The spin of an electron may either be + ½ , also known as spin up (where  is 

Plank’s constant divided by 2p) or − ½ , also known as spin down. 
 
We now invoke the Pauli Exclusion Principle which states that “no two electrons may 
have the same set of four quantum numbers; n, , m , s.” Therefore, each atomic orbital 
may contain no more than two electrons. 
 
The next step in determining atomic structure of an atom is to know in which order the 
electrons fill the orbitals. This is known as the Aufbau or building-up principle and 
relates to the way that the electrons around an atom are built-up, in terms of their 
quantum numbers. That is, their order of occupation, which leads to the ground state or 
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lowest energy configuration of the neutral atom. Initially the rule is quite simple. We 
start with the bare nucleus of atomic number Z, and allow the electrons to occupy 
orbitals of consecutively higher energy starting with n = 1-orbitals then n = 2 ... For 
each value of n, the order of orbital energy is s < p < d < f where < implies more 
favourable, i.e., more negative. Thus the first is 1s then 2s then 2p then 3s then 3p. 
Remember that each orbital can be occupied by two electrons, one with spin-up, one 
with spin-down, but that there are three p-orbitals so that the 2p-orbitals may contain up 
to six electrons. 
 
Unfortunately once 3p is reached the situation becomes more complex. Although we 
would expect the 3d-orbitals to be occupied next, electron-electron repulsions 
interactions between the electrons in orbits changes the order of preference and the next 
orbitals to be filled are the 4s followed by the 3d and then 4p. The order of occupation is 
shown in Table 2; 

 
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 
2 4 10 12 18 20 30 36 38 48 54 56 70 80 86 88 102 112 

He Be Ne Mg Ar Ca Zn Kr Sr Cd Xe Ba Y Hg Rn Ra No ? 

 
Table 2. Order of Occupation of Orbitals 

 
Thus we can describe an atom in terms of its electron occupation. 
 
[Ar] 1s2 2s2 2p6 3s2 3p6 
 
[Ba] 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 
One last question remains. What happens if there are less than six electrons available to 
fill all three 2p-orbitals? What is the distribution of the electron spin? In such 
circumstances, we invoke Hund’s rule which states that “an atom in its ground state 
adopts a configuration with the greatest number of unpaired electrons.” Thus if an 
orbital is unfilled (incomplete), the electrons in the unfilled orbital distribute themselves 
between the available orbitals. 
 
One tool, which we will use to describe the distribution of electrons in atoms (and 
molecules), is the energy level diagram. In this, the energy of the orbital is designated 
by a horizontal line. The orbital with the lowest energy is at the bottom and that with the 
highest energy at the top. The number of electrons, which occupy that orbital is shown 
by the number of vertical lines. The spin of the electron is then identified by an 
arrowhead on the vertical line, thereby pointing ether up or down. For example, a 
neutral manganese atom has the following electronic configuration: [Mn] 1s2 2s2 2p6 3s2 
3p6 4s2 3d5. The corresponding energy level diagram is shown in Figure 1. 
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Figure 1. Energy Level Diagram for a Manganese Atom Showing the Electron 
Occupation. 

 
2.2. The Schrödinger Equation 
 
When a particle such as an electron is free it can exhibit any of a continuous range of 
energies. When it is confined, that is, acted on by a force, it may only be found in one of 
a discrete set of energy levels. This observation is utterly fundamental to all atomic 
structure, including atoms and molecules. It is a consequence of Heisenberg’s 
uncertainty principle, Pauli’s exclusion principle, and can be described by the 
mathematics of quantum mechanics using the Schrödinger equation. 
 
Unfortunately it is not possible to solve the Schrödinger equation exactly, except in a 
few simple cases. However, the solutions for the hydrogen atom can be used to 
construct solutions for not only more complex atoms but also for complex molecules 
and even solids. Therefore, it is still very useful to consider the solution of the 
Schrödinger equation for hydrogen as this provides the basic building blocks (i.e., 
orbitals) with which we will be concerned in subsequent sections. 
 
Nevertheless, a full derivation of the solution of the Schrödinger equation for hydrogen 
is beyond the scope of the present article (and is not necessary). However, we shall 
consider some aspects of the solution so that the origin of the atomic orbitals shapes will 
become apparent, as will the significance of the  and m  quantum numbers. Full 
derivations for hydrogen are available in many advanced atomic theory textbooks. 
 
2.2.1. Solutions to the Schrödinger Equation: The Wave Function 
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The Schrödinger equation is an eigenvalue equation so that it takes the form 
 

ψψ E  =  Ĥ       (2) 
 
In equation Ĥ2  (known as the Hamiltonian operator) is composed of mathematical 
operations which are concerned with energy terms of the electrons, e.g., the kinetic and 
potential energies. When we solve this equation we find the functions, ψ, which when 
operated on by the Hamiltonian result in a single number, E, an energy, which 
multiplies the original function, ψ. In other words, ψ, the wave function, is a stationary 
state of the equation, a stable solution which is not altered by the mathematical 
operation Ĥ . What this means physically is that we find the mathematical 
representation, ψ, for the electron orbiting around the nucleus. The wave function is the 
stable stationary state of the electron. The electron is allowed to exist in this orbital 
without alteration. 
 
Clearly, the wave function will be of immense importance in much of what follows. 
Therefore we need to have a better understanding of exactly what it is. This was 
provided by Max Born, who suggested that if ψ(r) is the amplitude of the wavefunction 
ψ at some point in space r, the probability of finding the particle within a small volume 
dt is proportional to ψ2dt. In other words, ψ2 is the probability density and ψ is the 
probability amplitude.  
 
Since the particle must be found somewhere in space, the integral over all space is equal 
to 1. 
 

12 =∫ dtψ       (3) 
 
Therefore a wavefunction must be finite at all points in space, but it may be negative, as 
indicated in Figure 2. 
 

 
 

Figure 2. A Wavefunction ψ and its Corresponding Probability Amplitude ψ2 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATERIALS SCIENCE AND ENGINEERING – Vol. I – Bonding in Solids, Structural and Chemical Properties - R. W. Grimes 

©Encyclopedia of Life Support Systems (EOLSS) 

 
2.2.2. Hydrogen as a Central Force Problem 
 
The hydrogen atom is a two-body problem; a positive nucleus attracting a negative 
electron. However, by fixing the origin at the nucleus and by noting that the electron is 
subject to a central conservative potential, we can consider the problem to be a one-
body problem; that of an electron moving under the influence of a spherically 
symmetric potential. 
 
Since we are considering a central force, the influence that the nucleus has on the 
electron is only a function of how far radially the electron is from the nucleus. Thus we 
can write, V(r); that is, the potential is only a function of r. This potential is represented 
in Figure 3. The smaller the value of r, the more negative the potential energy V(r). 
 

 
 

Figure 3. The Potential Energy V(r) Acting on an Electron by the Nuclear Charge 
Clearly given the spherical symmetry of the system, it is much easier to solve the 
hydrogen atom problem using the spherical polar coordinate system, r, θ, φ. 
Schrödinger’s equation for the center of mass hydrogen atom problem therefore 
becomes 
 

( ) ( ) ( )φθφθ
μ

,, E   =   ,, rV  +   
2

2
2

rr ΨΨ⎥
⎦

⎤
⎢
⎣

⎡
∇−

  (4) 
 
where 
 

2
2

 
2

∇
μ  

 
is the kinetic energy operator for the electron (μ is the electron mass) and V(r) the 
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potential energy. We then make a simplification; the wavefunction is rewritten as a 
product of two factors, Ψ(r,θ,φ) = R(r) Y(θ,φ), where R(r) is the radial component and 
Y(θ,φ) the angular component. 
 
2.2.3. The Angular Component 
 
It transpires that in a central-force problem, the angular part of the wave function is 
determined entirely by the magnitude, |L|, and the z-component, Lz, of the angular 
momentum of the electron. The reason we must specify both the magnitude and z-
component is because the electron’s angular momentum is a vector quantity, which may 
be pointing in a direction other than that of the z-direction. The magnitude of the 
angular momentum is determined by the  quantum number since L2 = (  + 1) 2 and the 

z-component by is determined by m . The resulting functions Y(θ,φ)are called spherical 
harmonics and to indicate their origin we designate then 
 

( ).,, φθmY
 

 
When  = 0 this is called the s-state. Notice that in this case the function 
 

( )φθ ,,mY
 

 
is a constant, that is, it is independent of angle; s-states are spherically symmetric. The 
polar diagram in Figure 4 shows that the locus of points of equal value form a sphere. 
This is reasonable since, if  = 0, i.e., the angular momentum of the electron is zero, 
there is no preferred orientation of the electron’s orbit. 
 
When  = 1 the three p-orbitals (see Figure 5) are formed which are characteristic of the 

three allowed orientations of the angular momentum corresponding to m  = –1, 0, 1. 

 
 

Figure 4. Angular Distribution of Electron Density in an s-Orbital 
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Figure 5. Angular Distribution of Electron Density in the p-Orbitals 
 
When  = 2 the five d-orbitals are formed because there are five allowed orientations of 

the angular momentum corresponding to m  = –2, –1, 0, 1, 2. The usual way in which 
the d-orbitals are drawn is shown in Figure 6. Although these do not correspond to the 
specific values of m  (they are actually linear combinations of the specific functions) 
this representation is more physically and chemically useful. 
 

 
 

Figure 6. Angular Distribution of Electron Density in the d-Orbitals 
What we have drawn above is the shape of the hydrogen wave functions from the point 
of view of their angular dependence. That is, how the wave functions look if we keep a 
constant radius from the nucleus. This will be very useful when we consider the angular 
orientation of bonds, since bonds are built up from different orbitals coming together. 
Clearly an s-orbital will not care about which orientation another atom is bonding from 
but p and d-orbitals will show specific angular preferences. 
 
2.2.4. Parity 
 
One property of the spherical harmonics that we must be aware of concerns their parity. 
Consider the Px function. The function seems to show mirror symmetry about the y-
axis. However, closer inspection reveals that at each positive values of x, the function 
has the same magnitude but opposite value as for the corresponding negative x value 
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(remember the value of the wave function can be positive or negative). Clearly an s-
orbital has the same magnitude and sign at opposite sides of the origin. The d-orbitals 
show the same magnitude and sign on opposing points across the origin but different 
parity between x and y (or x and z or y and z) directions. Parity has important 
consequences for chemical bonding, as we shall see in Section 3. 
 
To distinguish the sides of the wavefunction, they are represented in two dimensions as 
shown in Figure 7, where the hatched lines indicate opposite parity. 
 

 
 

Figure 7. Representation of Parity in p- and d-Orbitals 
 
2.2.5. The Radial Component 
 
In many textbooks, atomic orbitals are only represented in terms of their angular 
component, as in the diagrams above. However, as stated in Section 2.2.2, the wave 
function is a product of both angular and radial components. Therefore we now consider 
the radial component.  
 
It is possible to rewrite the Schrödinger equation, so that we explicitly consider the 
radial dependence and form a radial eigenvalue equation. The potential energy part of 
this equation, P, has the form: 
 

( ) ( )
2

2

o

2

2
1 +  + 1 

4
Ze-  =  ,

rr
r

μπε
Ρ

    (5) 
 
What Eq. (5) describes is the total potential acting on an electron and is a function of the 
distance from the nuclear, r and the angular momentum of the electron, . The first term 
in this equation is the Coulomb interaction and the second term is known as the 
centrifugal potential. The first term has a negative sign indicating that it is responsible 
for attracting electrons to the positive charge of the nucleus. The second term has a 
positive value and clearly repels electrons away from the nucleus. For orbitals which 
have  = 0 (i.e., an s-orbital) this repulsion is zero and their orbitals are described as 

“penetrating.” Orbitals with higher  values (e.g., p- and d-orbitals) are repelled more 
from the nuclear region. 
 
The full radial eigenfunctions, i.e., the radial components of the wave function, R(r), are 
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as represented in Figure 8. 
 

 
 

Figure 8. Radial Distribution of Electron Density in 1s- and 2p-Orbitals 
 
Note that for the 1s-orbital ψ(r) has a positive value when r = 0 whereas for 2p, ψ(r) = 0 
when r = 0. 
 
2.2.6. Energy Level Values 
 
Finally, we should go back to the idea of orbital energy. For hydrogen, the energy of an 
electron in an orbital (the eigenvalue) is given by 
 

(eV) Voltselectron    13.6–  =  2n
En

    (6) 
 
We can now draw these energies onto the potential energy function (see Figure 9). 
Remember, when n = ∞, it follows that E∝ = 0. This is the vacuum level, when the 
electron has effectively escaped from the nucleus. 
 
Note how the energy levels depend only on the n quantum number. Therefore in 
hydrogen the 2s and 2p-orbitals have the same energy as do the 3s-, 3p-, and 3d-orbitals. 
 
2.3. Atoms with more than One Electron 
 
As soon as we try to solve Schrödinger’s equation for atoms with more than one 
electron, the situation becomes much more complex. The problem is that each electron 
experiences an electrostatic potential from not only the nucleus but from the other 
electrons. With hydrogen, we defined the center of the problem to be the nucleus so that 
only one particle was effectively moving: the electron. With more than one electron, the 
motion of the particles becomes an issue (this is known as correlation). In addition, 
since the electrons are indistinguishable, they may exchange with each other. The 
exchange interaction must also be taken into consideration. 
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Figure 9. Potential Energy Well for an Electron with Superimposed Energy Levels 
 
Fortunately, we are able to use an important simplification. The orbitals in which the 
electron reside have the same basic shape (i.e., functional form) as their associated 
hydrogen-like equivalents. This approximation is so good that we often forget that it is 
only approximately true. Using this, we can solve Schrödinger’s equation (although 
numerically, not analytically) for atoms with even high atomic numbers. Of course, 
since the Z value of the nucleus changes, the orbital energies of these hydrogen-like 
solutions also change and by comparing with experiment we are able to see how good 
an approximations this is. 
 
One important consequence of having more than one electron in an atom is that the 2s- 
and 2p-orbitals no longer have the same orbital energy. The reason for this lies with the 
different extents to which the 2s- and 2p-orbitals are able to penetrate the nucleus. The 
2s-orbital is penetrating and spends more time closer to the nucleus. Consequently it 
screens the 2p electron which is not able to get so close to the nucleus. The 2p electron 
sees both the attractive nuclear charge and the repulsive 2s electron charge. The 2p 
electron energy is therefore slightly higher than the 2s. 
 
For the same reason the energy of the 3s-orbital is lower than the 3p which is lower than 
the 3d-orbital. In other words the orbital energy depends on both the n and  quantum 
numbers. 
 
 
- 
- 
- 
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