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Summary 
 
In this paper, the real-time (or on-line) optimization (RTO) of the control system set 
points for MSF desalination plants is addressed. The recomputation of set points is 
necessary to counter slowly varying disturbances which move the process from optimal 
operating conditions. Typically, RTO is implemented using a modular structure. Since 
RTO is based on steady-state models, its results are only reliable if steady-state data are 
used. Here, a method based on wavelets is used for steady-state detection. To improve 
the quality of the steady-state data, data reconciliation and gross error detection are 
used. The reconciliation is generally formulated as a constrained minimization problem. 
Once the data are validated, new set points are computed such that an economic 
objective is optimized. 
 
In this work, RTO was implemented in a simulation environment for MSF plants using 
powerful commercial tools, i.e. SPEEDUP for data reconciliation and optimization and 
Matlab for steady-state detection. The coordination and data exchange module between 
the different tasks of the optimization scheme was implemented based on the 
communication mechanism EDI (External Data Interface) of SPEEDUP. A distributed 
client and server architecture was chosen to map the partial problems of the full RTO 
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problem to independent and self-sustained software processes. The communication 
between client and server processes is based on remote procedure calls. 
 
1. Introduction 
 
The operating conditions of industrial plants are essentially computed to optimize some 
economic objective, e.g. to maximize profit. Optimal operating conditions would be 
obtained with a centralized optimizing controller, which uses on-line dynamic 
optimization based on a non-linear dynamic model of the complete plant. However, this 
solution is not used in practice for a number of reasons, which include the difficulty of 
controller design, its maintenance and modification, robustness problems, operator 
acceptance, and lack of computer power. 
 
In today's practice, operations optimization is achieved using a two-layer hierarchical 
structure of the automation system (Skogestad and Postlethwaite 1996): (a) an 
optimization layer, which computes appropriate operating conditions and (b) a control 
layer, which keeps the controlled variables at the specified set points. Within the 
optimization layer, the computation tends to be performed open loop based on non-
linear steady-state process models. The control layer is mainly based on feedback 
information and relies on linear dynamic models. Process dynamics can be 
accommodated for in a more rigorous manner by several modifications of this base 
structure as suggested in Helbig et al. (1998). 
 
During plant operation, even if the controlled variables are kept at the set points, these 
disturbances may change the plant optimum over time. Slowly varying disturbances, 
result from variations in the environmental conditions (e.g. quality of the feed rates), 
uncertainties, and changes in the process parameters (e.g. heat transfer coefficients) as 
well as changes in the market conditions such as raw material and product prices. If the 
slowly varying disturbances occur frequently enough or determining the proper values 
for the optimization variables is too complex to be achieved from several standard 
operating conditions calculated off-line, increased plant profit can be achieved via real-
time (or on-line) optimization (RTO). 
 
The success of RTO depends on the availability, accuracy and the effective integration 
of the following parts (De Hennin et al. 1994; Loeblein and Perkins 1998). 
 
A plant model which is essential for the prediction of the plant behavior at the optimal 
set points and, thus, for the computation of the economic objective. Hence, it must be 
valid over a sufficient range of operating conditions to guarantee the reliability of the 
optimization results. 
Reliable, i.e. accurate and consistent measurement data. 
Robust, flexible, and efficient optimization software. 
 
To meet the above requirements, a modular RTO structure, as illustrated in Figure 1, 
should be used. Since the optimization is based on a steady-state model of the plant, a 
prerequisite to use the measurements for optimization is to ensure that, at the considered 
time, the process is actually at steady-state (Crowe 1996). Once the steady-state has 
been detected, the data should be analyzed for gross (or systematic) errors. The 
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measured data are then reconciled to ensure their consistency with a process model. 
Usually, mass and energy balances are employed to enhance the information content of 
the measurements. Finally, the validated data are used within the optimization module 
to compute new set points, which are passed to the regulatory control system. 

 
RTO in general has been discussed in De Hennin et al. (1994), Marlin and Hrymak 
(1997) and Loeblein and Perkins (1998) and many successful applications have been 
reported (Marlin and Hrymak 1997). For multistage flash (MSF) desalination plants, 
only a few publications on RTO (Ghiazza et al. 1997; Krause and Hassan 1997) are 
known. Husain et al. (1992) theoretically discussed the problem of optimizing the 
operation of an existing MSF plant. Those authors suggested using the objectives 
minimizing energy cost or minimizing energy consumption and providing inequality 
constraints which limit the decision variables. They discussed some optimization 
strategies and the integration problem of optimization and process models. Ghiazza et 
al. (1997) reported an actual implementation of RTO at the Al Taweelah B plant 
(United Arab Emirates). 
 

 
 

Figure 1. Structure of the steady-state, real-time optimization. 
 
In this work, the modular structure of RTO (Figure 1) has been implemented in a 
simulation environment for MSF plants using powerful commercial tools, i.e. 
SPEEDUP (Technology, Aspen 1993) for data reconciliation and optimization and 
Matlab (MathWorks 1993) for steady-state detection. The coordination and data 
exchange module between the different tasks of the optimization scheme has been 
implemented based on the communication mechanism EDI (external data interface) of 
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SPEEDUP. A distributed client and server architecture have been chosen, to map the 
partial problems of the full RTO problem to independent and self-sustained software 
processes. The communication between client and server processes is based on remote 
procedure calls. 
 
The paper is structured as follows. At first, the different parts of the RTO scheme are 
briefly described reviewing the existing approaches for each subtask. The chosen 
algorithms are tested separately. The necessary data for the tests are obtained from 
simulations using a dynamic model. The final section gives an overview on the interplay 
of all software modules in a simulated real-time environment. The steady-state model is 
presented in Section 2. Section 3 deals with steady-state detection based on a novel 
wavelet strategy. In Section 4 the problem of data reconciliation and gross error 
detection is studied. Optimization of the MSF plant is dealt with in Section 5. Different 
objective functions and process parameter constraints are addressed. Off-line results for 
some optimization scenarios are obtained and discussed. In Section 6, we discuss the 
on-line implementation of the whole RTO scheme using the client-server coordination 
module. A case study of a real MSF desalination plant is presented. 
 
2. Steady-state MSF Model 
 
A prerequisite to solving the data reconciliation and optimization tasks is the availability 
of a steady-state model of the plant considered. The MSF plant (Figure 2) can be 
structurally decomposed into three sections: a brine heater section, a heat recovery 
section, and a heat rejection section. The heat recovery and rejection sections are made 
up of a series of stages, each of which has a flash chamber and a condenser. 
 

 
 

Figure 2. Schematic of the MSF plant with major control loops. 
 
The schema of the steady-state plant model is presented in Figure 3. Since there are 
principally no differences between the stages of the MSF plant in the rejection and 
recovery sections, an identical stage model is implemented for all the stages except for 
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the first and last stages. In the brine heater section, models are derived for the injection 
cooler and the heat exchanger. All submodels comprise global mass and energy 
balances taking only water into account. A fourth-order polynomial enthalpy-
temperature relationship is assumed for liquid streams. The model comprises 
approximately 300 equations. 
 

 
 

Figure 3. Plant model structure and definition of stream numbers. 
 
3. Steady-state Detection 
 
Steady-state detection is an important task for RTO since it is based on a steady-state 
model. The existing approaches used in practice include the following. 
 
a) Linear regression over a data window with a subsequent t-test on the regression 
slope; if the slope is significantly different from zero, the process is almost certainly not 
at steady-state. 
 
b) Use the t-test to assert whether the average calculated from recent history is 
unchanged compared to the value based on earlier history. 
 
c) Standard deviation calculation over a window of recent data and a subsequent 
comparison of the results with threshold values; if the standard deviation is greater than 
the threshold, the not-at-steady-state condition is triggered. An alternative approach is to 
use an F-test-type statistic which is the ratio of variances calculated on the same set of 
data by two different methods. These methods have significant shortcomings (see Cao 
and Rinehart (1995) for details). 
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A method aiming to overcome the problems of existing approaches is suggested in Cao 
and Rinehart (1995). The underlying idea is to use the F-test-type statistic, i.e. for the 
same data set composed of n samples of a process variable x, the ratio 
 

2
3

2
1

σ

σ
=R  

 
of two different variance estimations, 
 

( ) ( ) .  and    with  2
2

1)1(2
12

31
1

1
2

1
12

1 ∑∑∑ = −−==− −==−= n
i iin

n
i in

n
i in xxxxxx σσ  

 
Both estimations are only valid if the data are stationary and uncorrelated. Thus, the 
variance ratio R can only be expected to be near unity if the data are stationary. The 
method of Cao and Rhinehart (1995) introduces new recursive equations that allow fast 
calculation of the variances: 
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with 0 < λ1,2,3 < 1. An estimate of the variance ratio is then 
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These equations require a minimum of data storage and arithmetical operations. If the 
signal is not stationary due to slow transient process phenomena, then Ri > 1. Ri may be 
smaller than 1 for fast oscillations in x. If there is no noise and the signal is stationary, 
the variance estimations become zero and Ri is not defined. It is thus essential that some 
degree of noise is present. 
 
The method used in this work is based on wavelets, which are families of basis 
functions that yield the representation x(t) = b00φ(t) + Σj,k cj,k Ψj,k(t) of a signal x. The 
wavelet basis functions {Ψj,k; ∀j, k} are obtained by translation, i.e. φ (t) → φ (t + 1) and 
dilation, i.e. φ (t) → φ (2t) of the single function φ (t) called the scaling function. An 
example is the Haar wavelet, for which the scaling function is unity on the interval [0, 
1), i.e. φ (t) = 1, t ε [0, 1). 
 
The wavelet method is particularly based on the property which states that the wavelet 
coefficients of a stationary signal expanded in a wavelet series vanish (Flehmig et al. 
1998). As wavelets are compact, this is also valid for a partially stationary signal. In that 
case, the wavelet coefficients that belong to the stationary interval are zero. Moreover, 
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the Haar wavelet is most appropriate for steady-state detection since it has only a 
vanishing 0th moment. Stationary intervals can be identified by searching for regions 
with vanishing wavelet coefficients. Figure 4 shows an example of the wavelet 
coefficient c of a Haar-transformed piecewise constant signal x. The originally discrete 
signal is depicted above the wavelet coefficients. Shaded coefficients are zero. 

 

 
 

Figure 4. Multiscale representation of a Haar-transformed time series. Grey shaded 
areas refer to vanishing wavelet coefficients. 

 
The procedure performs the following steps. First, the measurement is transformed in a 
wavelet series, resulting in a vector of coefficients c. A search for coefficients of small 
magnitudes in c follows. The corresponding subintervals which show steady-state are 
easily determined from the support of the wavelets. Subsequently, the neighborhoods of 
these intervals are examined more thoroughly. Since the approximation is sensitive to 
noise, standard wavelet denoising techniques are applied prior to the steady-state 
detection. 
 
Computational effort could be reduced by using the same wavelet basis for denoising 
and detection. The suggested wavelet denoising method removes high frequency 
components with relatively small energy (compared to the noise energy) from the 
measurement to obtain the reconstructed signal. Depending on the noise level and on the 
wavelet basis, a part of the signal information will also be removed with the noise. 
 
The user has to provide three parameters: (a) the maximum allowed deviations Tol from 
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stationarity, which can be interpreted as a variance limit, (b) jend which defines the 
minimum length of a stationary interval, and (c) jtraceend which defines the accuracy of 
the detection length. The higher jtraceend, the more accurate is the length of the detected 
stationary interval. 
 
- 
- 
- 
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