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Summary 
 
Recent research is reviewed on fouling of the process equipment used in industrial 
water systems where composite crystallization and particulate and corrosion fouling 
may be present. Crystallization or precipitation fouling is the most studied type of 
fouling. Other types of fouling are studied in various degrees under conditions where 
one type of fouling occurs in isolation. In contrast, in practical industrial applications 
usually several types of fouling occur simultaneously. Though some recent studies 
address the importance of composite fouling, in general little attention has been paid to 
the relative significance and the interactive effects of different fouling processes when 
they occur simultaneously. 
 
1. Background 
 
Surface fouling reduces the performance of various types of process equipment such as 
evaporators, condensers, and reverse osmosis units, which are used in desalination, 
power generation, and water purification and wastewater treatment plants. Although 
these processes might be very different from each other, they all suffer from similar 
fouling problems. Combating the fouling of process equipment costs industries billions 
of dollars each year and can render some processes uneconomic which are otherwise 
technologically and environmentally viable. 
 
Crystallization, particulate, and corrosion fouling are usually present in industrial water 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PHYSICAL, CHEMICAL AND BIOLOGICAL ASPECTS OF WATER - Composite Fouling, Fundamentals and Mechanisms - R. 
Sheikholeslami, A.P. Watkinson 
 

© Encyclopedia of Desalination and Water Resources (DESWARE) 

systems; however, the fouling propensity of water is routinely studied with one 
mechanism isolated. There have been numerous separate studies on crystallization 
fouling, on particulate fouling, and on corrosion fouling of various types of process 
equipment. These are reviewed separately in this encyclopedia and are also discussed 
briefly below. This paper addresses composite fouling of industrial water systems when 
any two of these types of fouling occur simultaneously. This is the real condition 
encountered in most industrial applications and an area where research is very much 
lacking. 
 
Epstein's (1983) classification of fouling processes and mechanisms is used to provide a 
frame of reference. He classified fouling mechanisms and its types in terms of a 5 × 5 
matrix, with five major categories and five sequences of events in each category. The 
types of fouling are crystallization, particulate, biological, corrosion, and chemical 
reaction fouling. Chemical reaction fouling, even though it can involve both organic and 
inorganic material, mainly involves organic material and is usually encountered in 
petroleum refineries and petrochemical plants. Crystallization, particulate, corrosion and 
biological fouling are mainly encountered in industrial water systems. Crystallization 
fouling is subdivided into precipitation fouling and solidification fouling. Solidification 
does not occur in desalination equipment because of the operating temperature of the 
system. Therefore, crystallization fouling is the only type of precipitation fouling 
present in these systems and, hence, precipitation and crystallization fouling will be 
used interchangeably in this document. Precipitation fouling in heat exchangers is due 
to the presence of concentration gradients as a result of a temperature gradient at the 
surface. In the case of reverse osmosis membranes, precipitation fouling is due to the 
presence of concentration gradients, which result from concentration polarization. 
Particulate fouling is present in both heat exchangers and membrane systems. Corrosion 
fouling may be encountered only in the presence of a corroding surface and therefore is 
not applicable to membrane processes (ex situ corrosion, which can result in the 
deposition of particulate corrosion products, is considered under particulate fouling). 
Biological fouling is present in membranes but is not present in normal evaporator 
surfaces because of the high operating temperatures; however, it will be present in other 
types of heat transfer equipment such as vacuum evaporators and condensers which 
operate at lower temperatures which are suitable for the growth of biological organisms. 
Therefore, in desalination equipment a combination of several types of fouling is 
present irrespective of the actual separation technique used. 
 
In all types of fouling, five stages are present in different degrees of significance 
(Epstein 1983). These are initiation, transport, attachment, removal, and aging. The 
initiation, delay, or induction period is the time lag observed before the formation of a 
fouled layer takes place. Transport refers to the movement of particles or ions from the 
bulk fluid to the surface by mass transfer processes. Attachment refers to the adherence 
of deposit components to the surface, which is governed by Van der Waals and 
attractive double layer forces or to surface integration in the case of crystallization. 
Removal encompasses dislodgment of deposits from the surface to the bulk fluid. The 
removal process may or may not occur immediately after the deposition process has 
started. Aging is the alteration of a chemical or crystal structure (e.g. polymerization or 
dehydration) that begins immediately after the deposition process has started. Aging 
usually strengthens the deposit. 
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Since fouling mechanisms are usually synergistic, experiments are commonly designed 
to isolate one type of fouling. For example, on-line filters may be used to eliminate the 
possibility of particulate deposition when studying crystallization fouling. Recent 
investigations (Bansal et al. 1997; Gill and Sheikholeslami 1997; McGarvey 1999; 
Sheikholeslami 2000) have confirmed the presence of particulate deposition during 
crystallization of some species and the synergistic effects of the two processes. The 
interactive effects of corrosion and crystallization fouling have also been observed in 
some studies; corroding surfaces not only result in corrosion fouling but also affect the 
rate of precipitation of supersaturated salts and the resulting deposit structure 
(Sheikholeslami 1984; Sheikholeslami and Watkinson 1986). To reduce difficulties in 
the interpretation of results from complex fouling processes, corrosion resistant surfaces 
are usually used to isolate fouling mechanisms in studies of industrial water systems. 
 
To understand the interactive effects of different fouling mechanisms in composite 
fouling, it is useful to first briefly consider the significant factors in each individual 
fouling type. 
 
2. Crystallization Fouling 
 
Precipitation fouling occurs because of the existence of a supersaturated solution. In 
supersaturated solutions, ionic species are transferred either by diffusion and/or by bulk 
transport to the solid surface. This is followed by attachment of nucleated species by 
integration into the crystalline deposit. Detailed reviews of experimental data, theories 
and models of precipitation fouling are available (Hasson 1978, 1997; Bott 1988, 1997). 
The effect of pH, temperature, velocity, surface material and geometry on the rate of 
scale formation of various salts has been shown by some investigators (Watkinson 
1983; Sheikholeslami and Watkinson 1986; Bohnet 1987; Andritsos and Karabelas 
1995; Andritsos et al. 1996, 1997). The effect of temperature and pH on the scale 
structure was also studied for some salts (Andritsos et al. 1996; Mori et al. 1996). 
However, the key features of crystallization fouling are most usefully discussed in terms 
of models that have been developed to describe the process. 
 
Since water chemistry affects precipitation significantly, a suitable model should 
incorporate its effects. Of the various models that have been developed for fouling, only 
the model by Hasson et al. (1978) and the one derived from it by Andritsos et al. (1997), 
take the full water chemistry into account when predicting the rate of precipitation 
fouling. The latter removed the simplifying assumptions for low and high pH values 
from the earlier ionic diffusion model. Chan et al.'s (1989a, b) numerical model was 
developed for CaCO3 based on multispecies mass transport and incorporated 
momentum, heat, and mass transfer for both laminar falling-films and turbulent flow in 
the annulus; a fully developed flow velocity was assumed for determination of a mean 
turbulent velocity. As Chan et al.'s (1989a, b) model does not really represent the flow 
behavior in the turbulent region and Andritsos et al.'s (1997) model is only an extension 
of Hasson et al.'s (1978) model, the original ionic diffusion model of Hasson et al. 
(1978) can be used with sufficient accuracy to discuss the effect of significant 
parameters in crystallization fouling. A drawback in all these models is the neglect of 
the effect of removal. The argument for this exclusion is that the strength and adherent 
nature of pure crystallization scales is such that removal need not be considered. 
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Hasson et al. (1978) developed the ionic diffusion model to predict the fouling rates of 
CaCO3. The model was based on the radial diffusion of Ca2+ and CO3

2- ions from the 
bulk of the fluid followed by crystallization of CaCO3 on the wall. Two different 
equations were provided to predict the deposition rate depending upon the solution pH, 
one for pH < 8.5 and the second for pH > 8.5. This was done to take into account the 
diffusion of predominant species, which are pH dependent. 
 
For pH levels below 8.5, 
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Equation (1) can be rearranged to give an explicit function for w, as is Eq. (2). This 
model can be modified to predict the crystallization rate of other inverse solubility salts. 
The modification for CaSO4 has already been developed (Hasson 1981; Gill and 
Sheikholeslami 1997; Sheikholeslami 1998). 
 
In general, the model predicts that increasing the bulk and surface temperatures will 
increase the rate of precipitation fouling; the surface temperature is a much more 
significant factor than the bulk temperature. The effect of solution pH is incorporated 
through the use of solubility and dissociation constants; increasing the pH decreases the 
solubility and enhances crystallization fouling. Where diffusion is the controlling step, 
the rate of fouling increases with velocity. Velocity does not affect the gross rate of 
deposition at higher velocities where the reaction is the controlling step. As mentioned 
above, the effect of shear stress and removal cannot be predicted by any of the available 
crystallization models. To incorporate the removal by shear stress, a generalized 
removal term that was originally proposed by Kern and Seaton (1959) and then 
modified by Taborek et al. (1972) can be used, as shown by the following equation: 
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3. Particulate Fouling 
 
Particulate fouling has also been the subject of many investigations and various models 
have been proposed to predict the extent of particulate fouling in process equipment. 
Detailed reviews of the experimental results and theoretical models are available 
(Gudmundsson 1981; Epstein 1988, 1999; Bott 1995). 
 
Particulate fouling may originate in two ways. It may occur due to pre-existing 
particulates in the process stream or by generation of particulate matter under the 
operating conditions of the system. Particulate matter may be generated in a 
supersaturated solution if crystallization takes place in the bulk fluid or if already 
deposited material on the surface is released to the bulk fluid by erosion or by sloughing 
off. Therefore, supersaturation can contribute to particulate fouling as well as 
crystallization fouling. In particulate fouling, particles may be of colloidal size where 
diffusion is the mechanism of transport and attachment is controlled by Van der Waals 
forces, electric double layer, and Born energies. The resistances to diffusion and surface 
attachment processes are in series. Transport is one of the better-understood stages of 
fouling and the deposition flux for particulate fouling is represented by the following 
equation: 
 

( )bulk surfacepart transport p pw k c c= −  (4) 

 
For submicron sized particles, the transport coefficient, ktransport, is the well-known mass 
transfer coefficient which can be calculated from well-established equations in the 
literature (Treybal 1980). 
 
For larger particles, the inertial and impaction forces become dominant; therefore, in 
this case, ktransport is not equal to the mass transfer coefficient. Figure 1 is a 
representation of change in the transport coefficient with particle size. The same order 
of magnitude for particle size (the abscissa in Figure 1) is applicable to both liquids and 
gases. The frictional velocity U* is obtained by Eq. 5. 
 

 
 

Figure 1. Three regimes of particle transport. 
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*

2b
fU U=  (5) 

 
The rate of attachment may be approximated (Epstein 1988a) using a factor called the 
sticking probability Sp, which represents the fraction of all the particles transported to 
the surface, which stick to the surface or via an attachment coefficient. Therefore, the 
following equation will define the rate of attachment for particulate fouling: 
 

bulk a bulkpart p transport p r pw S k c k c≈ =  (6) 
 
The attachment coefficient, 
 

,ark
  

should be determined experimentally. The sticking probability can be considered as 
unity when particles and surface have zeta potential of opposite sign. However, even in 
this case, when the surface is covered by particles then the zeta potential of the surface 
will become that of the particles and the sticking probability will decrease. The 
coefficient for the rate of attachment is temperature dependent and follows an Arrhenius 
relationship. For colloidal particles, 
 

ark
  

is determined using a more theoretical approach using attractive and repulsive forces, 
which results in a relationship of the following form: 
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Since the value of 
 

ark
  

is not currently available in the literature, for composite fouling, an approximation can 
be obtained by comparing the filtered and unfiltered runs under otherwise identical 
operating conditions and calculating 
 

ark
  

from the difference in the rate of deposition for the filtered and unfiltered runs. If 
particulate fouling exists in isolation 
 

ark
  

can be approximated from the deposition rate for conditions where the process is 
attachment controlled. Where transport is the controlling mechanism, the value of 
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ark
  

is of little significance. 
 
The total rate of particulate deposition can be obtained by assuming resistances in 
series. Therefore, the particle deposition rate is given by the following expression, 
which was cited by Epstein (1988): 
 

1 1

p a

p
part

D r
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w

k k

=
+  (8) 

 
This equation shows that under some circumstances particle deposition is greatly 
enhanced by increasing the surface temperature. Particulate concentration and 
diffusivity are of significance as well. Increasing the velocity would increase the 
deposition at low velocities where transport is the controlling factor. At higher 
velocities, the rate of attachment controls deposition. Particulate deposition usually 
results in a deposit that is not very adherent and rather prone to removal. Therefore, use 
of a removal term is necessary and Eq. (3) can be applied to this case as well. The effect 
of removal becomes significant at high shear stresses and for thick deposits. This would 
usually result in an asymptotic fouling behavior for particulate fouling. 
 
- 
- 
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