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Summary  
 
Pressure vessels and piping systems are designed, fabricated, and operated to ensure 
very high levels of structural integrity, because the consequences of structural failures 
can be severe. Catastrophic ruptures can produce high-energy missiles, and cause 
damage to adjacent equipment and structures along with injuries and fatalities to 
workers and the public. Failure modes of a less catastrophic nature, such as leaks, can 
release hazardous and flammable materials that can also present significant hazards. 
While service experience over the last century shows an excellent record of reliability, 
efforts continue to improve and maintain the reliability of vessels and piping systems. 
This chapter describes methods to predict probabilities of failure and to quantify the 
consequences of such failures. These methods can be applied to vessels or piping 
systems taking into consideration component-specific design features, materials of 
construction, fabrication practices, operating stresses and temperatures, environmental 
factors, operating and maintenance practices, and in-service inspection programs. 
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Topics covered include: 1) probabilistic structural mechanics and fracture mechanics, 2) 
the role of probabilistic risk assessment evaluations, 3) application of failure event data 
from operating experience, 4) risk-informed in-service inspection, and 5) probabilistic 
design methods. 
 
1. Introduction 
 
The safety and reliability of pressure vessels and piping has been a public concern since 
the beginning of the industrial age. Failures of early steam boilers became widely 
reported as boiler explosions killed thousands of people per year and inflicted great 
damage to property. As a result, engineering organizations and government agencies 
developed and imposed legal requirements for engineering codes that applied to the 
design, construction, and operation of boilers and other high pressure vessels. In the 50 
years after the American Society of Mechanical Engineering (ASME) was adopted, the 
number of deaths caused by explosions of properly operated boilers and pressure 
vessels was significantly reduced. Nevertheless, catastrophic failures still occur on rare 
occasions and other failures of a less significant nature (cracks and leaks) are more 
commonly reported. This chapter describes methods that can be used to estimate failure 
rates for vessels and piping systems. Also described are how such failure rates are used 
today in combination with evaluations of failure consequences using probabilistic risk 
assessment methods. Based on the author’s experience, the examples will focus on 
nuclear power plant applications. However, the same approaches also apply to other 
industries such as petro-chemical, gas transmission pipelines, and to more common 
items such as heating boilers and water heaters.  
 
Pressure vessels and piping systems are designed, fabricated, and operated to ensure a 
very high level of structural integrity because the consequences of structural failures can 
be severe. Even less catastrophic failures (such as leaks) can release hazardous and 
flammable materials that present significant hazards. Despite excellent safety records 
ongoing efforts are needed to ensure that the reliability of vessels and piping systems 
are maintained. This chapter describes methods developed over recent decades to 
predict frequencies of failure and to quantify the consequences of failures. Such 
methods can take into account vessel-specific design features, materials, fabrication 
practices, operating stresses, operating temperatures, environmental factors, operating 
practices, and in-service inspection programs. Topics include: 1) probabilistic structural 
mechanics and fracture mechanics, 2) the role of probabilistic risk assessment, 3) 
application of failure event data from plant operating experience, 4) risk-informed in-
service inspection, and 5) probabilistic design methods. 
 
2. Failure Mechanisms and Failure Modes 
 
Before the reliability of a vessel or piping system is evaluated, it is first necessary to 
identify the potential failure mechanisms and failure modes of concern. One must also 
relate different failure modes to possible safety and/or economic consequences. 
Judgment is needed to focus evaluations on those failure scenarios having highest 
likelihoods of occurrence. 
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2.1 Failure Modes 
 
There are many possible definitions (or degrees) of failure that may be of concern. 
Table 1 lists modes of failure that can be considered. These modes are presented in an 
increasing order of severity of consequence. The less severe modes (small cracks) are 
most likely to occur than the more severe modes (rupture). In addition, degradation if 
not detected and repaired will generally progress over time from a less severe mode 
(small crack) to more significant modes (leaking through-wall crack) and ultimately 
even to catastrophic failure. 

 
Small crack 

Local corrosion/wall thinning 
Excessive distortion 

Leaking Through-Wall Crack 
Through-wall corrosion/wall thinning 

Excessive Leakage 
Fracture/catastrophic rupture 

 
Table 1. Example Failure Modes 

 
In some cases, concerns may be limited to catastrophic ruptures that would present the 
greatest threat to workers or to the general public. In other cases, evaluations may have 
a broader objective that considers unexpected degradation (corrosion, cracking, etc.) 
that would require repairs or replacements of components and thereby have an 
economic impact associated with repair costs and/or the loss of the productive use of the 
component. The consequences of small leaks can be very different depending on the 
situation. For a water storage vessel, the loss of a small volume of water could be of 
little concern; whereas, small leaks in vessels containing toxic or flammable materials 
could result in a large number of fatalities. 
 
Table 1 lists failure modes in order of increasing consequences as follows: 
 
• Small Crack – Degradation is sometimes detected in the form of a crack that does not 

fully penetrate the wall of the vessel or piping component. While such structural 
degradation by itself may pose no immediate safety consequences, it is prudent to 
take corrective actions to prevent future consequences. The need for repairs to the 
degraded component should be determined and implications for other similar 
components should be evaluated. Corrective actions could include an aggressive 
inspection program. In some cases, complete replacement of piping and vessels may 
be needed if the original designs and the selected materials are determined to be 
unsuitable for the operating conditions at the facility. 

• Local Corrosion and Wall Thinning – While design methods usually specify a wall 
thickness that includes some allowance for corrosion over the life of the vessel and 
piping, the actual operating conditions may produce local rates of corrosion that 
exceed the expected rates. Inspections can and should detect corrosion before it fully 
penetrates the wall thickness and before any safety impacts result. As in the case of 
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cracking, corrective measures in the form of repairs and additional inspections 
should be implemented to ensure safe and economical operation. 

• Excessive Distortion – A failure mode of concern may not involve penetration of the 
component wall, but may rather degrade the function of the component because of 
excessive deflection or distortion. For example, seating surfaces may become 
sufficiently misaligned to the degree that gasket leakage results. 

• Leaking Through-Wall Crack – In some cases, even a small amount of leakage can 
have significant safety consequences, especially if the leaking fluid is highly toxic or 
flammable. In other cases, the release of otherwise non-hazardous fluids could 
impact the operation of nearby critical equipment by causing corrosion or electrical 
malfunctions. 

• Through-Wall Corrosion/Wall Thinning – As for cracking, leakage even at relatively 
small rates can present significant safety or economic consequences. 

• Excessive Leakage – Leakage rates can over time increase to levels that impact the 
function of a system or component. For example, a leak could eventually 
depressurize a critical system to the extent that it could no longer perform its 
intended function. In other cases, the leakage could create a water spray that could 
cause damage in the area adjacent to the leak. 

• Fracture/Catastrophic Rupture – This most severe of consequences comes from 
sudden fracture or ruptures, which can occur without any prior leakage to give any 
warning of impending failure. The consequences of concern can be related to loss of 
function of the rupture component itself (e.g., loss of cooling water to process 
equipment) or can come from the extreme energy of the rupture event (e.g., high 
velocity missiles, blast waves, release of hot fluids, etc.). 

 

 
Figure 1. Pipe that ruptured at nuclear power plant after severe wall thinning at inner 

surface caused by flow-assisted corrosion. 
 

Figures 1–3 show some examples of ruptured piping. In each case, the failure involved 
the release of large amounts of energy along with significant economic impacts in terms 
of repair costs and shutdowns of important industrial facilities for extended periods of 
time. Figure 1 illustrates a failure associated with severe thinning of the pipe wall that 
caused a pipe rupture and fatalities to workers at a nuclear power plant. Figure 2 shows 
a ruptured pipe that had been in service for a large number of years. In this case, the 
corrosion damage to the older pipe was relatively small with the primary cause of 
failure being a sudden over-pressure from a water hammer event. Figure 3 shows 
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another ruptured pipe that failed at a coal-fired power plant. In this case, the degradation 
was not wall thinning but cracking by the mechanism of creep damage to an axial weld 
in the pipe that operated at a relatively high temperature. The catastrophic nature of the 
failures shown by Figures 1–3 serve to emphasize hazards associated with operation of 
pressure vessels and piping and the need to reduce failure frequencies to the lowest 
possible levels.  

 

 
Figure 2. Steam pipe at municipal heating system that ruptured because of severe load 

imposed by water hammer event. 

 
 

Figure 3.  Pipe at coal-fired power plant that ruptured along axial weld because of high 
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temperature creep damage to weld. 
 
2.2. Failure Mechanisms 
 
Table 2 lists a number of failure mechanisms and other causes that are known to result 
in failures of pressure vessels and piping systems. This list is intended only to show 
examples and will not be discussed in detail. Many failures come from gradual material 
degradation (e.g., corrosion, fatigue cracking, wear, etc.) that occurs over time spans of 
many years before it advances to a stage sufficient to cause a structural failure (leak or 
rupture event). Metal fatigue is one common failure mechanism. Small-diameter piping 
is often subject to vibrational stresses that cause cracking. Fatigue failures of larger 
sizes of vessels and piping are more likely to come from cyclic thermal stresses such as 
at locations exposed to cyclic exposures to hot and cold fluids. Corrosion mechanisms 
are a particularly common cause of failures both in the form of widespread loss material 
(wall thinning) or as local attack such as pitting or cracking. 
 
In other cases, a single short-term event (e.g., overpressure, extreme overheating, water 
hammer, etc.) can cause a sudden failure. Some loading events are natural occurrences 
such as earthquake loadings; whereas, other events come from human errors in 
operating and maintaining the facility such as from improper repairs and operation at 
pressures or temperatures over design limits. Pressurized systems are usually protected 
from excess pressures and temperatures by safety devices, but these devices can fail to 
function due to time-related degradation or improper installation or maintenance. 
 

Operation at loads and/or pressures exceeding design limits 
Operation at temperatures over design limits 

Operation at temperatures below brittle fracture limits 
Improper design and fabrication 
Improper repairs and alterations 

Structural damage from maintenance 
Improper or degraded supports for components 

Structural damage from external events (impact, crushing, etc.) 
Excessive vibration 

Improper or degraded overpressure protection 
Material or welding defects 

General corrosion 
Flow-assisted corrosion 

Wear (excessive maintenance) 
Thermal fatigue cracking 
Vibration fatigue cracking 
Stress corrosion cracking 
High-temperature creep 

Long-term embrittlement 
Loose or missing fasteners 

 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ANCILLARY EQUIPMENT AND ELECTRICAL EQUIPMENT - Pressure Vessels and Piping Systems: Reliability, Risk and 
Safety Assessment - F.A. Simonen 

© Encyclopedia of Desalination and Water Resources (DESWARE) 

Table 2. Example Failure Causes 
 
3. Reliability and Risk 
 
Terms related to reliability and risk must be clearly defined and understood within the 
context of vessel and piping integrity. Risk combines the concepts of probability of 
failure and consequences of failure using the definition 

        Risk Probability of Failure Consequences of Failure= ×  
 
Probability is usually quantified as a failure frequency, which expresses the number of 
failure events that occur over a given time span. It is important to define the event of 
concern along with the time span of interest. An example definition would be rupture 
events per vessel per year of operation. Another example related to piping systems 
would be leaks per weld per year or leaks per meter of pipe per year. In other cases, it 
may be of interest to address reliability in a larger context such as failures per plant or 
failures per system.  
 
The concept of failure frequency is applied to systems that operate on a continuing 
basis, as for example at electric power plants. However, other systems remain in a 
standby mode during normal operation and are needed only rarely to perform critical 
functions in times of emergencies. An example would be piping in a fire protection 
system. For such systems, risk evaluations express reliability in terms of probability of 
failure per demand rather than as failures per year. 
 
Different failure events can have wide ranging consequences. Consequences can only 
be of an economic nature expressed in terms of dollars associated with loss of 
production plus the labor and materials for repairs. There can also be safety 
consequences from injuries to workers and/or the general public. For example, a small 
leak at a power plant would have no safety consequences and only minor economic 
consequences if the repair of the leak can be accomplished without interrupting the 
operation of the plant. On the other hand, the rupture of a pressure vessel or a large pipe 
could cause a large energy release, an explosion, or a fire with human deaths and 
injuries. In addition to severe safety consequences, ruptures can have major economic 
consequences totaling millions of dollars both from an extended shut down of a large 
production facility and major costs to replace the ruptured component along with repairs 
to damage inflicted on adjacent components and structures. 
 
4. Failure Frequency Estimation 
 
Failure frequencies for pressure boundary components must often be estimated to 
support Probabilistic Risk Assessments (PRAs) and other decision making purposes. 
Estimates are most often based on reported failures from past service experience and 
have focused on a system level rather than on the component level. Such estimates have 
limitations for predicting future performance and in identifying priorities for managing 
the integrity of specific components. Estimates based on service experience are better 
for evaluations of more common failure modes consisting of small leaks. Estimates for 
the frequencies of larger leaks and rupture events are, however, subject to larger 
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uncertainties if based soley on service experience.  
 
Risk evaluations require realistic estimates of failure frequencies that apply to the 
specific combinations of materials, degradation mechanisms, and operating conditions. 
There are four basic approaches discussed below for estimating piping and vessel 
reliability: 
 
(1) Statistical estimation using service data, 
(2) Structural reliability analysis (SRA) based on probabilistic fracture mechanics, 
(3) Expert judgment/expert elicitation, and 
(4) Any combination of (1) through (3). 
 
- 
- 
- 
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